An Incomplete Factorization Technique for Positive Definite Linear Systems

نویسندگان

  • By T. A. Manteuffel
  • T. A. MANTEUFFEL
چکیده

This paper describes a technique for solving the large sparse symmetric linear systems that arise from the application of finite element methods. The technique combines an incomplete factorization method called the shifted incomplete Cholesky factorization with the method of generalized conjugate gradients. The shifted incomplete Cholesky factorization produces a splitting of the matrix A that is dependent upon a parameter a. It is shown that if A is positive definite, then there is some a for which this splitting is possible and that this splitting is at least as good as the Jacobi splitting. The method is shown to be more efficient on a set of test problems than either direct methods or explicit iteration schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A robust incomplete factorization preconditioner for positive definite matrices

We describe a novel technique for computing a sparse incomplete factorization of a general symmetric positive de nite matrix A. The factorization is not based on the Cholesky algorithm (or Gaussian elimination), but on A-orthogonalization. Thus, the incomplete factorization always exists and can be computed without any diagonal modi cation. When used in conjunction with the conjugate gradient a...

متن کامل

An Incomplete Cholesky Factorization for Dense Symmetric Positive Definite Matrices

In this paper, we study the use of an incomplete Cholesky factorization (ICF) as a preconditioner for solving dense symmetric positive definite linear systems. This method is suitable for situations where matrices cannot be explicitly stored but each column can be easily computed. Analysis and implementation of this preconditioner are discussed. We test the proposed ICF on randomly generated sy...

متن کامل

A Multilevel Block Incomplete Cholesky Preconditioner for Solving Rectangular Sparse Matrices from Linear Least Squares Problems

An incomplete factorization method for preconditioning symmetric positive definite matrices is introduced to solve normal equations. The normal equations are formed as a means to solve rectangular matrices from linear least squares problems. The procedure is based on a block incomplete Cholesky factorization and a multilevel recursive strategy with an approximate Schur complement matrix formed ...

متن کامل

CIMGS: An Incomplete Orthogonal FactorizationPreconditioner

A new preconditioner for symmetric positive definite systems is proposed, analyzed, and tested. The preconditioner, compressed incomplete modified Gram–Schmidt (CIMGS), is based on an incomplete orthogonal factorization. CIMGS is robust both theoretically and empirically, existing (in exact arithmetic) for any full rank matrix. Numerically it is more robust than an incomplete Cholesky factoriza...

متن کامل

A Sparse-Sparse Iteration for Computing a Sparse Incomplete Factorization of the Inverse of an SPD Matrix

In this paper, a method via sparse-sparse iteration for computing a sparse incomplete factorization of the inverse of a symmetric positive definite matrix is proposed. The resulting factorized sparse approximate inverse is used as a preconditioner for solving symmetric positive definite linear systems of equations by using the preconditioned conjugate gradient algorithm. Some numerical experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010